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prisms with the SrSi2 structure has been illustrated 
by Holden 0971). There is evidence that the SrSi2 
and fl-Mn packings serve as the basis of the cubic 
structures observed in the 'blue phases' of cholesteric 
liquid crystals (Meiboom, Sammon & Berremann, 
1983, and references therein). 
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of the Chemistry Department of Edinburgh Univer- 
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models of cylinder packings, which were made by 
Lita R. O'Keeffe. This work was supported by a grant 
(DMR 8813524) from the US National Science 
Foundation. 
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Abstract 

General ideas about symmetries of quasicrystals 
based on simple self-similar tiling models and their 
mathematical formulation in terms of higher- 
dimensional multimetrical space groups find exten- 
sive confirmation in the structure of the decagonal 
A178Mn22 quasicrystal phase. There is an incredible 
richness and variety of symmetries involving, in addi- 
tion to mirror, rotation, translation and screw-rotation 
symmetries, planar and linear scalings as well, 
together with involutions generating those scalings, 
with and without associated nonprimitive,transla- 
tions. The linear parts of these symmetries generate 
a point group of infinite order, not yet fully investi- 
gated but, up to now, consistent with the symmetry 
of a self-similar decagram. The applicability of these 
symmetries to the atomic structure of the quasicrystal 
m178Mn22 observed in nature requires the concept of 
higher-dimensional crystal forms and their projec- 
tions in the physical space and in the internal space, 
respectively. 

0108-7673/92/060884-18506.00 

I. Introduction 

One of the most striking characteristics of the diffrac- 
tion pattern of many quasicrystals is the (discrete) 
scaling invariance of the positions of the Bragg peaks 
(Kuriyama & Long, 1986; Long & Kuriyama, 1986; 
Ostlund & Wright, 1986). That property is also found 
in simple classical models of quasicrystal structures 
described in terms of aperiodic tilings. Examples are, 
in one dimension, the Fibonacci and the octagonal 
chains and, in two and three dimensions, the Penrose 
tiling. The scaling property of the diffraction pattern 
is a consequence of the fact that those tilings are 
invariant with respect to appropriate inflation/defla- 
tion transformations. This means that, by combining 
inflation (deflation) with a rescaling of the distances, 
one gets the original pattern back. 

The aim of the present paper is to demonstrate that 
scaling invariance can occur in quasicrystal struc- 
tures, when described in terms of atomic positions. 
That will be shown by means of the concrete example 
of the decagonal A178Mn22 quasicrystal phase on 
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the basis of the structure refinement by Steurer 
(1991). 

Before going into more details, a few important 
facts have to be kept in mind to avoid misunderstand- 
ing. First of all, the intensity of the diffraction pattern 
is not scaling invariant. It is in the positions of the 
Bragg peaks that one finds evidence for possible 
scaling symmetries. Such symmetry is also implicit in 
the intensity distribution of the diffraction pattern. 
Secondly, considering the direct space, the charge 
density of the quasicrystal is also not scaling 
invariant: an atom having a well defined electron 
cloud around it is incompatible with dilation (or 
contraction) symmetry. Scaling only concerns atomic 
positions, i .e.  the structure in a point-atom approxi- 
mation. Thirdly, even a discrete atomic pattern never 
has a scaling-symmetry group. Indeed, a minimal 
finite interatomic distance is always involved, so that 
at most there is a semigroup of invariant scaling 
transformations. Connected with that, one has to be 
aware that admitted inflation/deflation transforma- 
tions of a self-similar tiling or of a scaling-invariant 
quasicrystal are not automorphisms of the atomic 
positions defined in the physical space but 
monomorphisms only. Nevertheless, scaling sym- 
metry represents an essential feature for understand- 
ing the structure of A17sMn22. 

It is well known that lattice-translational symmetry 
is recovered, for an ideal infinite quasicrystal 
structure, by means of aft embedding in a higher- 
dimensional space (the superspace). For this 
embedded structure, the transformations leading to 
scaling in space do have all the properties required 
of crystallographic symmetries. 

Crystals are never infinite and it is appropriate to 
make a distinction between possible, occupied and 
virtual atomic positions, 'occupied' meaning the poss- 
ible positions inside a given volume (normally a crys- 
tal growth form) and 'virtual' the possible positions 
that are outside that volume. In the case of an embed- 
ded quasicrystal this is of fundamental importance 
for understanding the nature of the basic facts pointed 
out above. As explained later and discussed in a 
previous paper (Janner, 1992), a crystal form fixes 
the volume of the occupied atomic positions in the 
superspace and gives by projection a corresponding 
form in the physical space. Another form is obtained 
from a projection into the internal space (the 
orthogonal complement). The form in physical space 
is responsible for a maximum value of the interatomic 
distances (as in the case of crystal-growth forms), 
whereas the form in the internal space leads to finite 
minimal distances and in the limit of an infinite quasi- 
crystal it corresponds to what is usually denoted as 
an atomic surface (Steinhardt & Ostlund, 1987). It is, 
however, worth pointing out that these volumes are 
defined microscopically and involve a set of 
equivalent atomic positions, whereas a crystal growth 

form is a macroscopic object defined for the crystal 
as a whole. 

In both cases, the crystal forms break the space- 
group symmetry. In normal crystals, the breaking of 
the symmetry, e .g .  of lattice translations, only affects 
atoms whose positions are near the boundaries. One 
can say the same for embedded quasicrystals but, in 
physical space, even atoms inside the quasicrystal are 
near to atomic positions that are at the surface of the 
intemal crystal form, all atoms being affected by the 
requirement of finite minimal interatomic distances. 

There are, therefore, symmetries in the superspace 
that in the physical space only imply possible struc- 
tural properties of the quasicrystal. In general, global 
superspace symmetries are reduced in space to a set 
of local ones. Furthermore, because of aperiodicity, 
it is only possible to verify locally whether or not 
those structural relations are present in a given quasi- 
crystal. Quasiperiodicity ensures, on the other hand, 
that the same local environment is repeated 
throughout the structure. 

To restrict considerations to a local region is also 
meaningful from another point of view. Scaling trans- 
formations are of infinite order, as are the correspond- 
ing superspace symmetry operations. As in the unit 
cell the number of atomic positions is finite, only 
special Wyckoff positions of finite multiplicity are 
allowed. As already mentioned, a continuous charge 
distribution, perfectly compatible with the rotational 
point-group elements, represents a symmetry- 
breaking element for the scaling properties of the 
quasicrystal. Going beyond a local region by repeat- 
ing application of an inflation transformation 
dramatically increases the symmetry-breaking effects 
and becomes meaningless for structural relations at 
too large distances. 

2. Superspace embedding 

Quasicrystals belong to the class of incommensurate 
crystals, which is characterized by Bragg diffraction 
peaks with positions generating a :~-module M* of 
dimension 3 and rank n. Owing to incommensurabil- 
ity, n is larger than 3; in the case of the decagonal 
phase one has n = 5. As shown by Bak (1985) and 
Janssen (1986), the superspace approach is applicable 
to quasicrystals. 

By embedding the charge density p ( r )  according 
to the scheme 

^ ,,, F T n  
p ( r )  <Fr3~ p ( h l ,  . . . ,  h , ) -  p s ( h l ,  . . . , hn)~ p ~ ( r ~ ) ,  

(1) 

where FT,, denotes the n-dimensional Fourier trans- 
form, one gets a lattice-periodic density ps(rs) defined 
in an n-dimensional space (the superspace). The 
original Z-module appears as a projection of the 
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reciprocal lattice ~* of p,. For a proper characteriz- 
ation of the conditions for reflections in terms of an 
n-dimensional space group G (the superspace 
group), the embedding of M* onto ~* has to be such 
that the rotational symmetries of the diffraction pat- 
tern (and thus of M*) are mapped into rotational 
symmetries of ps (and thus of 2*) .  Accordingly, a 
Euclidean invariant metric is defined in the super- 
space and by duality a lattice ,~ follows, describing 
the translational symmetry of p~. 

The projection of 2 into the physical space yields 
another Z-module M, which in the case of quasicrys- 
tals has the same rank n as M* (and also, of course, 
the same dimension). Both projections are one-to-one 
mappings. The general situation can be represented 
schematically by 

M* Cpr°jecti°n It* ,a~* ¢duality) ,~ projection, ' M. (2) 

As can be seen, there are two alternative embeddings: 
a reciprocal-space embedding of M* onto 2*  defined 
as in (1) and a direct-space embedding of M onto 2 
presented below. These two embeddings are 
equivalent, but distinct. 

The meaning of M follows from (1) and (2): the 
relative positions in space of atoms, which in the 
superspace are translationally equivalent, can be 
expressed as integral linear combinations of the n 
basis vectors generating the Z-module M. The corre- 
sponding translationally equivalent atomic positions 
of a quasicrystal can thus be labeled by a set of n 
integers (indices), in an analogous way to the labeling 
of the Bragg reflections in reciprocal space. 

The projection into the physical space of all transla- 
tionally equivalent atoms in the superspace defines 
the possible positions. These form a dense set. The 
discrete set of the occupied atomic positions observed 
in the quasicrystal follows from the possible ones 
lying inside an appropriate acceptance region in 
superspace. We call that region a crystal form CF~ 
(as mentioned above) if its boundaries are equivalent 
with respect to the site symmetry. Therefore, the 
region CF~ requires a label i~ Ic indicating which 
set of translationally equivalent positions is involved. 
In the superspace one thus has (in the point-atom 
approximation) 

p~(r~) = E E ~(r~-mla l s - . . . -mna ,~)  
i ~ l  G m l , . . . , m  n 

x CF(~)(m,,. . . ,  m,), (3) 

with the summation over all integers mk and where 
a l , , . . . ,  a,,, generate the lattice ~. Whenever the 
meaning is clear, we will omit the superscript i. The 
characteristic function CF, takes the value 1 for the 
atomic positions inside the crystal form and 0 for 
those outside. From CF, one gets a crystal form CF 
in the physical space and another, CF~, in the internal 

space, according to 

CFs = (CF, CF,) ,  (4) 

with C F =  zrCFs and CF~ = zrtCF~. For a given i 
value, all these forms have the same point-group 
symmetry since the symmetry rotations involved leave 
invariant the external and the internal subspaces and 
generate isomorphic point groups. 

Equations (4) and (3) define the direct superspace 
embedding of a quasicrystal given by 

p ( r ) =  E E ~ ( r - m l a l - . . . - m n a n )  
i E l  G m l , . . . , m  n 

X CF(i)(ml, . . . , mn), (5). 

where the basis a l , . . . ,  a, generates the Z-module 
M and is the projection of the lattice basis 
a~s , . . . ,  a,s. The atoms of the quasicrystal are situated 
in space within the crystal form CF and have an 
internal position vector that is inside the crystal form 
CFt. In other words, the direct superspace approach 
corresponds to the cut-projection method (Katz & 
Duneau, 1986a, b) and, as already pointed out, CFI 
corresponds in the reciprocal superspace approach 
to an atomic surface. 

3. Euclidean symmetry 

The structural data of the decagonal phase A178Mn22 
are taken from the papers by Steurer (1989, 1991), 
the reciprocal superspace embedding from Janssen 
(1986) and from what can be found in the articles by 
Yamamoto & Ishihara on the relation between 
decagonal quasicrystals and Penrose patterns 
(Ishihara & Yamamoto, 1988; Yamamoto & Ishihara, 
1988). Here, the analysis of the symmetries will be 
done in the frame of a direct superspace approach, 
following the ideas on admissible quasicrystal sym- 
metries based on self-similar tilings (Janner, 1991b). 

The Z-module M* of the Bragg peaks is generated 
by 

ak* = a*(cos 2zrk/5, sin 2zrk/5, 0), 

k = l , . . . , 4  and a* = c*(0, 0,1), (6) 

where the components are expressed with respect to 
an orthonormal basis and a* =0.2556 (1) and c*= 
0.08065 (5) A-1. The reciprocal lattice ~*,  such that 
the three-dimensi0nal rotational symmetries of the 
diffraction pattern define five-dimensional rotations 
leaving that lattice invariant, is generated by the basis 

d*k = [a'k, COa*2k], k = 1 , . . . ,  4 and d* = [c*, 0] 

(7) 

where the splitting is according to the vector com- 
ponents in the external and internal space, respec- 
tively: x = [xe, xt]. Equation (7) has to be understood 
in the following way. One starts from a six- 
dimensional Euclidean space, a direct sum of two 
three-dimensional spaces for which the vectors 
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ak*, k = 1 , . . . ,  5, are defined as above. Thus the exter- 
nal space is three-dimensional, whereas the internal 
space, which involves Coa*2k for k = 1 , . . . ,  4 only, is 
two-dimensional. Therefore, the superspace is five- 
dimensional and is spanned by the lattice basis 
d * , . . . ,  d*.  The dual basis generating the direct lat- 
tice 2: is given by 

dk=(2/5)[ak,  (1/CO)a2k], 

k = l , . . . , 4  and ds=[C, 0], (8) 

where ak = a[cos (2z rk /5 ) -  1, sin (27rk/5), 0], a5 = 
c(0, 0, 1) and aa*= cc*= 1. In the following, Co = 1 
is chosen, which is justified when representing scaling 
symmetries in space in terms of hyperbolic rotations 
in superspace, as explained below. 

The Euclidean holohedry of the lattice 2: is the 
point group g e  = lO/mrnm generated by: 

t 0 0 -1  0 iOlt 
0 0 0 -1  

R ~ ( a ) = R l ( d ) =  1 1 1 1 
-1  0 0 0 

0 0 0 0 

R2(a) = R2(d) = 
t01 0 0 1 ! t 0  1 0 1 0 0 =m~; 

0 0 0  

0 0 0  

= R = 10; 

(9) 

(10) 

R3(a) = R3(d) = Rm~ = m2 so that 

R4(a) = R4(d) = 

m2rnl = R; (11) 

t l~ 0 0 0 1 0 0 0 ~  t 
0 1 0 =mz. (12) 

0 0 1 

0 0 0 - 

R(a) indicates that the matrix is expressed with 
respect to the basis a ~ , . . . ,  a5 of the Z-module M 
and R(d)  implies that the same matrix is now referred 
to the lattice basis d ~ , . . . ,  d5 of Z. Therefore, R(a)  
is a three-dimensional rotation, whereas R(d)  is a 
five-dimensional one (Janssen, 1986, 1988). So, in 
particular, m~ = R 2 ( a  ) is a mirror transformation in 
three dimensions (my according to the orthonormal 
basis adopted) but in five dimensions m~--R2(d) is 
an involution and not a mirror as one can see looking 
at its determinant (+1) and at the eigenvalues 
( 1 , 1 , 1 , - 1 , - 1 ) .  

The superspace group of the embedded quasicrys- 
tal structure is Ge = PlOs/mmc, as determined by 
Steurer (1989, 1991), justifying the name of the phase. 
This five-dimensional space group is generated by the 

Table 1. Equivalent positions of  G e = P l O f f m m c  
occupied in m178Mn22 

Atom 3 is at position (a'), atom 4 at (b'), atom 1 at (c') with 
z=0.1858 and atom 2 is also at (c') with z =0.027. 

Multiplicity, 
Wyckoff letter, 
site symmetry Coordinates 
2, (a ' ) ,  1--0m2 0 , 0 , 0 , 0 , 0  0 ,0 ,0 ,0 ,½  

- -  2 2 2 2 ,  3 3 3 3 1  
2, (b ') ,  10m2 5 ,5 ,5 ,  0 5 , ~ , 5 , 5 , ~  
4, (c'), 5m i 1 1 , ~ ,  1 1 1 , I ,  4 4 4 4 ,  Z_ l . /  4 4 4 4 - - - 1  5,3,  z 3 ,5 ,  z 5 ,5 ,3 ,  3 , 3 , 5 , 5 ,  z ' r ]  

lattice translations 2: = {d~ , . . . ,  ds} and by: 

g~ = {RI0, 0, 0, 0,½} = 105; (13) 

g2={m,lO, O,O,O,O}=m,; (14) 

g3 = {m210, 0, 0, 0, ½) = c; (15) 

g4 = {m~10, 0, 0, 0, 0 }=  mz. (16) 

The atoms observed are at the superspace atomic- 
unit-cell positions (p / 5, p / 5, p / 5, p / 5 , z ) , with 
integer values for p. Four inequivalent atomic posi- 
tions are occupied. According to Steurer (1991), atom 
1 is a t p = l  and z=0.0642,  atom 2 is a t p = 3  and 
z = 0.123, atom 3 is at p = 0 and z = 0.25 and atom 4 
is at p = 2 and z = 0.25. All these atoms have an atomic 
surface with pentagonal symmetry 5m, which is the 
site symmetry in the decagonal plane of these posi- 
tions. 

For our purposes, it is convenient to have the mirror 
plane at the origin, and that implies a shift by --~ in 
the z coordinates determined by Steurer (1991). The 
equivalent positions of the superspace group 
PlOffmmc occupied in the ideal five-dimensional 
A178Mn22 structure are indicated in Table 1, where ~, 
stands for -z .  The Wyckoff letters have been primed 
because their characterization is a provisional one 
not based on a complete description. 

On the basis of this structural information, one can 
compute the possible positions of the various 
equivalent atomic sets and compare these results with 
the experimental Fourier synthesis. In general, the 
agreement is amazingly good, despite a certain 
amount of disorder present in the AI /Mn distribution 
and the deviations from an ideal planar layer structure 
visible in the sections parallel to the tenfold axis (See 
Fig. 5 of Steurer, 1991). 

Here, only the data concerning atom 1 are presen- 
ted and discussed for the layer at z = 0.1858, because 
the properties of the remaining structure are essen- 
tially the same and do not give any further insight, 
as far as the present paper is concerned. 

In Fig. 1, the observed and the Calculated positions 
in a decagonal layer perpendicular to the tenfold axis 
are shown, together with the indices of the occupied 
positions for atom 1. These indices are the com- 
ponents of the corresponding vectors of the Z-module 
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Fig. 1. The charge density distribution in a 25 x 25 A region of a decagonal plane at z = 0.1858 (x3 = 0.064) of the quasicrystal AI78Mn22. 
(a) Fourier synthesis according to W. Steurer, who provided this figure. See also Fig. 7(a) of  Steurer (1991). (b) Calculated atomic 
positions in the same decagonal layer as in (a) for increasing size parameter A t of the crystal form CF(/): 0.95 (filled black circles), 
1.0 (encircled bullets), 1.05 (double circles) and 1.10 (open circles). The Z-module indices (zlz2z3z4) fixing the positions in space 

+ 4 
occupied by atom 1 at r = r 0 Y-k=• Zkak are also indicated. Compare with the Fourier density map (a). (c) The occupied positions 
indexed as in (b) are shown in their internal space arrangement. The pentagonal crystal form CF~ t) indicated corresponds to the 
value A t =0.95. 
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M expressed with respect to the basis a l , . . . ,  a4, 
omitting the fifth coordinate, which is constant for a 
given decagonal plane. The occupation depends on 
the internal crystal form CFz, which here has been 
taken normalized to 0.95, 1.0, 1.05 and 1.10, respec- 
tively. The values considered above are approxi- 
mately z 2 times larger than the value of 0.403 for hi 
indicated by Steurer (1991), where ~'=½(1+5 w2) 
denotes the golden number. In terms of the radial 
atomic-size parameter A, the internal crystal form CF, 
is the projection into the internal space of a suitably 
chosen unit cell Oo multiplied by A. Thus, in par- 
ticular, one has CF~ ') = hlWzOo. In Fig. l(c)  the distri- 
bution of the corresponding internal positions, 
labeled by their indices, is also shown with respect 
to the internal crystal form CF~ 1) for h, = 1.0, showing 
that indeed additional points (indicated by open 
circles) are external to that form even if inside CF (~). 
The few discrepancies between internal and external 
occupied positions are due to truncation effects of 
the calculations. The size of the external space pattern 
shown is about 25x25  A, to allow a direct com- 
parison with the experimental results already pub- 
lished [Fig. 7(a) of Steurer (1991)]. In Fig. 1 and in 
the corresponding following figures, the x axis is the 
abscissa and the y axis is the ordinate. 

In Fig. 2, a larger region of about 40 x 40 A is 
shown, corresponding to Fig. 8 of Steurer (1991) but 
now for a single value A, = 1.1. In Fig. 3, the region 
shown has been centered around a fivefold axis so 
that the point symmetry of the pattern is clear. All 
these plots have been made following the conventions 
adopted by Janssen (1986) and involve, for the pres- 
ent case (p = 1), a shift of the origin by f =  (4 4 4 4). If 
one wants to check algebraically the validity of the 
superspace symmetry (limited to those elements 
leaving the decagonal plane invariant), one has 
to transform the symmetry elements accordingly: 
{a a}Y-. . . --~{ala+(1-a)f}.  For example, for the 
fivefold rotational point symmetry a = R 2 and a = 0, 
one finds (1-RE)f=(40"00) ,  so that the position 
(2100) transformed by R a becomes the position 
(1210). Note that, as implied by the Euclidean embed- 
ding (8), the corresponding rotation in the internal 
space is by an angle 4~r/5 as one can see in Fig. l(c).  

The other generator of the planar point subgroup 
is the mirror m~ of (10), for which ( 1 - a ) f = 0 ;  it 
simply inverts the order of the four indices, 

m,( z, z2z3z4) = ( ZaZ3Z2Z,). (17) 

One can verify this symmetry in both the external 
and internal spaces. Thus, 5m is the point symmetry 
of the occupied positions of the layer and not only 
of the possible ones of the ideal superspace crystal: 
this is so because the crystal forms also have this 
same point symmetry. Deviation from this symmetry 
found in the plots is due to truncation effects in the 

range of indices adopted for practical reasons in the 
computation. 

The translational invariance with respect to the 
Z-module M is broken for points outside the crystal 
form. The validity of this symmetry for the points 
inside the form is verified by the existence of a 
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Fig. 2. (a) A 4 0 x 4 0  A region of  the same decagonal plane as in 
Fig. l (a ) .  Region obtained by W. Steurer from a five-dimensional 
Fourier synthesis. See Fig. 8(a) of  Steurer (1991). (b) The 
calculated atom 1 positions (for A 1 = 1.1) for the same region as 
in (a), together with the corresponding indices. 



890 DECAGONAL A178Mn22 QUASICRYSTAL 

consistent indexing of the experimentally observed 
atomic positions (for translationally equivalent 
atoms, of course) in agreement with the results of the 
computation. 

In the same way as an ideal crystal arises from a 
finite crystal by making it invariant with respect to 
lattice translations and thus infinite, one obtains an 
ideal quasicrystal from a finite and discrete quasicrys- 
tal by adding to the occupied atomic positions the 
corresponding virtual ones, so that it becomes M- 
translational invariant and accordingly infinite and 
dense. The three-dimensional Euclidean symmetry of 
such an ideal quasicrystal is isomorphic to an n- 
dimensional space group. In the present case, 
PlOs/mmc represents at the same time a group of 
three-dimensional Euclidean transformations and a 
five-dimensional space group, depending on which 
set of basis vectors the corresponding group of 
matrices is referred to. This can be seen as an 
expression of the crystallographic nature of a quasi- 
crystal. We have adopted here the same Hermann- 
Mauguin symbol as in the paper by Steurer (1991). 
The present analysis justifies, in some sense, the use 
of a nomenclature developed for the three- 
dimensional crystallographic case. This does not 
imply that it can be done without inconsistencies in 
all Z-module cases. The provisional character of the 
notation used will be even more apparent in the next 
sections; this is for obvious reasons. 

4. Pseudo-Euclidean symmetry (Minkowskian) 

4.1. Scaling 

According to Steurer & Mayer (1989) the Bragg 
peaks are at scaling-invariant positions. Indeed, they 
write: 'There is no way of uniquely indexing the 
diffraction pattern of the decagonal reciprocal-lattioe 
planes by multiples of ~" = (1 + 51/2)/2 '. 

This statement suggests the presence of a scaling 
symmetry. Indeed, as already indicated in a previous 
publication (Janner & Janssen, 1990), the decagonal 
Z-module M and the corresponding reciprocal 
module M* are invariant with respect to a scaling 
transformation S~o with eigenvalues 1, +r and + l / r .  
When referred to the basis a ~ , . . . ,  a5 or to the lattice 
basis d ~ , . . . ,  ds, one finds for $1o the matrix 

t 
0 0 1 1 0!t 1 1 1 0 

Slo= 0 1 1 1 . 
i i 0 0 
0 0 0 0 

(18) 

Applying the transformation S]o to the atomic posi- 
tions p/5, p/ 5, p/ 5, p/ 5, z of the ideal embedded 
m178Mn22 structure one obtains, modulo lattice trans- 
lations, the cyclic permutation (1 3 4 2) of equivalent 
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Fig. 3. Coordinates of the occupied positions of 
atom 1 within a decagonal plane as in Figs. 1 
and 2, centered on the fivefold symmetry axis. 
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positions 

z 

(19) 

which is incompatible with the set of occupied posi- 
tions indicated in Table 1. Nevertheless, a scaling by 
a factor 1- is structurally relevant for this decagonal 
phase. The explanation of this apparent paradox will 
be given below. 

The square of S~o transforms the occupied posi- 
tions, modulo lattice translations, in exactly the same 
way as the rotation R of (9). This is an empirical 
verification of the compatibility between Euclidean 
and non-Euclidean crystallographic symmetries, on 
which new concepts like scale/space group and multi- 
metrical group are based (Janner, 1990, 1991b, c; 
Janner & Janssen, 1990). Therefore, with S = $2o, the 
embedded structure is invariant with respect to 

g5 = {S O, O, O, O, ½} = S,/2 (20) 

with 

S ( a ) = S ( d ) =  
t i 0 -1  -1  0 t 

2 1 0 0 

1 2 1 0 = S = 3 .  

- 1  -1  0 1 0 

o 0 0 0 1 (21) 

In the superspace S is a hyperbolic rotation by an 
angle X = cosh-~ (3/2), i.e. 2 cosh X = 3, which is the 
value of the trace of the corresponding two- 
dimensional transformations and this explains the 
notation 3. In the decagonal plane it gives rise to a 
dilation by 1-2 and in the internal space there is a 
contraction by a factor 1 / I  "2. Indeed, expressing S(d)  
with respect to the basis D ~ , . . . ,  D5 given by 

Dl =d l  + d4, DE = d2 4- d3, D3 =d l  - d4, D4 -- d2 - d3, 

(22) 

one obtains the direct sum of two two-dimensional 
hyperbolic rotations 

t0 00 01t 1 3 0 0 

S ( D ) =  0 0 2 1 =3.  

0 0 1 1 

0 0 0 0 

(23) 

The D basis corresponds to the choice of a nonprimi- 
tive D(1, 3)(2, 4)-centered conventional unit cell for 
•. In fact, in a earlier paper (Janner & Ascher, 1969) 
this was discussed as a basis of a natural lattice. 

The positions (p/5, p/5,  p/5,  p/5, z) are invariant 
with respect to the translations of the lattice spanned 
by D~ and DE and lie along the diagonal of the 
corresponding unit cell. As one sees from the reduced 

form (23), S leaves invariant the two planes (Dl, /92)  
and (D3, D4). It is a discrete hyperbolic rotation that 
permutes, according to (19), the pairs of positions 
p = l , p = 4 a n d p = 2 ,  p - 3 ,  as shown in Fig. 4. In 

",, 0 / ",, 0 / | ",, 0 ,/ 

""' f/ "" '" .t ""' '/'' 

';," "i' 'x' 

/ • ';,, /' • ",, ,,," • ".. 
/ '",, o /  ",, / "... o. 
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~,,0/ \ , , 0 /  
"',,. ,// "~ /" 
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,/ 
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". 0 ,/ ',, ,,' 

• ,, ,,, 
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• '\,,,,, 
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/ 'o  ",, / • ",,,,,.. 
''', 0 /" ".. 0 / / ",,, ,,' '. / 

/ • "... /' • ",,, / 
,,"' "., 0 ,/ ",, 0 /' 

(b) 

Fig. 4. Scaling-invariant two-dimensional sublattice At of the 
decagonal five-dimensional lattice ,~. The atomic positions at 
(p/5)(Dl+D2) are indicated in (a) for p=4mod 5 (filled 
circles) and p = 1 rood 5 (open circles) and in (b) for p = 3 mod 
5 (filled circles) and p = 2 mod 5 (open circles). The scaling 
transformation appears in this subspace as a crystallographic 
hyperbolic rotation that leaves the lattice invariant and permutes 
the p = 1 and p = 4 or p = 2 and p = 3 positions, respectively. 
Examples in (a) and (b) are indicated by bold lines. 
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the five-dimensional space this is the result of the 
screw hyperbolic rotation g5 given in (20). 

4.2. Local Fibonacci chains 

The transformation $1o of (18), expressed with 
respect to the D basis takes the form 

1 00 01t 1 2 0 0 

Slo(D)= 0 0 1 1 " - -NI~N~@I.  (24) 

0 0 1 0 

0 0 0 0 

From a geometrical point of view, $1o represents the 
direct sum of two two-dimensional N~ transforma- 
tions, where N1 is a hyperbolic rotation by an angle 
~o = sinh-~ ½ combined with a reflection with respect 
to the asymptotes 

= 
cosh ~o sinh 

Nt \sinh~o cosh~o 1 

= ( sinh ~o cosh ~o~ 

\cosh  ~o sinh ~o]' 
(25) 

whose square has the form required by S. The trans- 
formation N1 has already been considered in previous 
papers (see, for example, Janner, 1991c); it was 
shown to be the superspace embedding of the 
Fibonacci scaling transformation having eigenvalues 
z and -1/z .  One may verify that the sublattice A2 
spanned by D3,/94 is a square lattice such that D3 
forms an angle tz with the asymptote at 45 °, where 
tan t~ = 1/~'. As is well known, by orthogonal projec- 
tion on the line of the lattice points within a strip, 
one generates a Fibonacci chain (as represented in 
Fig. 5), which is self-similar with respect to an infla- 
tion by z. The same can be said for the lattice A1 
generated by DI and DE. Indeed, the two lattices are 
related by Euclidization [see Janner (1991 b) for more 
details], i.e. through a hyperbolic rotation by an angle 
/3 such that tanh/3 = - I  "-3 = 2 - 51/2 (Fig. 6). The pro- 
jection considered above is simply the projection 7r 
on the physical space. 

The p positions that are interchanged by the $1o 
transformation within the (D~, DE) plane according 
tO the cyclic permutation (1342) all share the same 
sublattice A2. Therefore, as S~o leaves this sublattice 
invariant, even if it interchanges the various p values, 
it induces a scaling symmetry transformation by z on 
the atomic positions lying on the line, which is the ,r 
projection of the (/93,/94) plane. Mutatis mutandis, 
the situation is the same when considering the internal 
space instead of the external physical one. In par- 
ticular, under favorable conditions, the occupied 
atomic positions on such a line belong to a Fibonacci 
chain, with missing (virtual) atoms being the result 
of some mismatch between the required strip region 

and the actual (D3, D4)-planar intersection of the 
corresponding crystal form. 

All this can be verified for p -- 1 (atom 1) taking, 
for example, the atomic position at P = (1001) as the 

Fig. 5. Another scaling-invariant sublattice A 2 spanned by the 
orthonormal basis D3 and D 4. The occupied positions in space, 
together with the corresponding indices, are given as filled 
circles. This information will be used in Fig. 7 for illustrating 
the concept of Fibonacci line. 

Fig. 6. The two scaling-invariant sublattices At and A 2 shown in 
Figs. 4 and 5 are equivalent when considered in an indefinite 
metric plane. Indeed, they are transformed into one another by 
the hyperbolic rotation by an angle /3 =-tanh-l(51/2-2). It 
illustrates the application to an existing quasicrystal structure 
of the concept of Euclidization introduced in a previous paper. 
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origin. From Fig. 5, if one adds (1001) to the indices 
one obtains the Fibonacci chain sequence 

. . . ,  (~.24), (~i14), ( i i l3 ) ,  (0i12), (0002), 

(1001), (2000), (21i0), (31ii),  (32~i), (42~),  

(5223), (5333), (6334), (6444), . . . .  (26) 

The occupied positions occurring within a decagonal 
plane (compare with Fig. 1) and situated along what 
we shall call a Fibonacci line (as indicated in Fig. 
7a) are 

. . . ,  (7_7_24), ( i i l3 ) ,  (0T12), (1001), (21i0), 

(31ii),  (42~),  (52~),  (53~),  (6334), . . . ,  (27) 

whereas the missing ones are the corresponding vir- 
tual positions. Fig. 7(b) shows that these virtual posi- 
tions, aligned with respect to the occupied ones, are 
indeed external with respect to the internal crystal 
form CF~ 1). 

Because of the missing atoms, the (linear) scaling 
symmetry by a factor ~" is only locally verified. 
Nevertheless, there is a large number of Fibonacci 
lines within the decagonal plane that have such linear, 
but slightly broken, sealing symmetry (see Fig. 8). 
This is a likely explanation for the scale invariance 
by a factor r of the positions of the Bragg peaks 
mentioned above. 

This insight gives the idea of investigating the trans- 
formations of the type 1 2 ( ~ ) N k ~  1 that have integral 
entries when expressed with respect to the d basis, 
since they leave the p positions invariant and induce 
in space a linear scaling by a factor ~.k. One finds that 
the lowest value for which these requirements are 
satisfied is k = 3. One has accordingly 

7 2 ( d )  = 

21110it 1 1 0 - 1  

-1  0 1 1 

-1  -1  1 2 

0 0 0 0 

= T2-- 120 N 3 ~  1, (28) 

which yields a new symmetry generator of the 
m178Mn22 quasicrystal phase, 

g6 = { T2I 0, 0, 0, 0, 0}. (29) 

Note that this point-group element leaves the 
decagonal plane invariant. In such a plane it rep- 
resents a ~.3 dilatation along a Fibonacei line parallel 
to the (vertical) y axis, with origin on the (horizontal) 
x axis. In particular, the position (1001) is left 
invariant by g6 = { T210, 0, 0, 0, 0}, whereas the posi- 
tion (21i0) is transformed to (6334), which has as 
ordinate z 3 times the ordinate of (2170). If applied 
to (2100) one then gets (5323), as expected [see Figs. 
l(b) and 7(a)]. 
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Fig. 7. A Fibonacci chain through the position (1001). (a) Not all 
the points of the Fibo~[cci chain indicated in Fig. 5 are occupied 
here. [For comparison take into account that in Fig. 5 the origin 
is at (0000).] This is an effect of the boundaries of the crystal 
form CF~ ~), as shown in (b). (b) The positions belonging to the 
Fibonacci chain that are indicated in Fig. 5 but missing in (a) 
are external to the crystal form, as expected. 
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In an analogous way, one finds that 

Tlo(d) = 

011 2 31 3 21 1 10!') 
- 1  -1  -1  0 

0 0 0 0 

(30) = 7"1o ~ N 3 ~  12@ 1 

leaves the ~ lattice invariant and interchanges the p 
positions according to the permutation (1243), which 
is the inverse of that produced by $1o. Thus the p 
positions are left invariant by the product TloS~o = To 
and we have found a new symmetry element 

with 

g7 ={Tol0, 0, 0, 0, 0} (31) 

i - 1  - 2  -1  0 
4 4 1 0 

To(d)= 4 4 2 0 

- 1  - 2  -1  0 0 
0 0 0 0 1 

= To--- N ~  N1G 1. (32) 

Furthermore, T~o = T permutes the p positions in the 
same way as R and S and it also yields a symmetry 
element 

gs={TO, O,O,O,½}=T1/2. (33) 

In contrast to S, the transformation T is a linear 
scaling operation in the decagonal plane and not a 
two-dimensional one. Combining T with the total 
inversion 11 in the subspace (D1, D2), which can be 
expressed as 

{1110, 0, 0, 0, ½}= {mlR 5 O, O, O, O, ½}-.-. g2gS1, (34) 

one obtains a new symmetry TI of the quasicrystal, 

g9={I ,T]o ,o ,o ,o ,O}=T, .  (35) 

In the decagonal plane, TI corresponds to a mirror 
transformation combined with a linear scaling trans- 
formation, in a direction perpendicular to that expan- 
ded by T2. Indeed, the positions (2100), (3211), 
(5323) are mapped by T~ into (0652), (1743) and 
(3835), respectively. The scaling factor is - r  6 with 
respect to the distance from the vertical line through 
the origin (the y axis), which is the invariant line. In 
particular, the position (2201) is transformed into 
(3020), as expected. (See, for example, Figs. 3 and 11.) 

4.3. Local tenfold axes 

The analysis given in the previous subsection allows 
one to understand the origin of an impressive struc- 
tural features of the decagonal phase: a circular 

arrangement of ten atoms around a central one, situ- 
ated at a tenfold axis of local point symmetry. More 
will be said later on about the distribution of these 
local tenfold axes. Here an explanation will be given 
of how such local symmetry is possible, despite the 
fact that the decagonal plane has only fivefold sym- 
metry. 

In a way analogous to the scaling symmetry by r 
considered above, the 36 ° rotation R given in (9) 
interchanges the p positions, according to the permu- 
tation (14)(23) and leaves the five-dimensional lattice 

invariant. In contrast, the p-independent sublattice 
A2 generated by D3, D4 is not left invariant. Its projec- 
tion in the physical space is a one-dimensional rank- 
two Z-module F2 along a Fibonacci line, which is p 
independent, as already explained. Therefore, a 
Fibonacci line is transformed by R into a rotated one, 
arising from ~rRA2. 

The crystal form CFI, however, is not R invariant, 
so the occupied Fibonacci positions along those lines 
do not always show such a point symmetry. Neverthe- 
less, around points sufficiently inside the form CFI, 
a local tenfold symmetry arises. One could equally 
well describe the situation in terms of a fivefold point 
symmetry around a local center of inversion of the 
Fibonacci chains involved. 

A typical example is shown in Fig. 8, where one 
sees that, despite the local character, the rotational 
symmetry goes well beyond the nearest neighbors. 
For peripheral atomic positions, the situation is in 
principle analogous, but is structurally unphysical 
due to too many missing atoms. 

Fig. 8. A set of Fibonacci lines intersecting at (3020) and giving 
rise to a local tenfold axis. 
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4.4. Involutions 

The sublattice A1, generated by D~ and D2, is left 
invariant by the reflection too: D~ ~ D2 and by the 
hyperbolic rotation N 2, as we have seen. Accordingly, 
one obtains two infinite families of two-dimensional 
hyperbolic mirrors, as already discussed by Janner & 
Ascher (1969), 

mk=N2kmo and rk=--N2kmo, k~7/. (36) 

Expressed in the D basis, one typically has 

mk(D)=[ --fEk --f2k-2~ 
\f2k+2 f2k i '  (37) 

where fk is the kth Fibonacci number, which is also 
defined, by recursion, for negative k values, J/kl = 
(--  1)lkl+lJ~kl. 

A set of hyperbolic mirrors m k and rk together with 
their action on some of the positions with p = 2, 3 are 
indicated in Fig. 9. We recall that a hyperbolic mirror 
reflects a point on the invariant line along a direction 
that is symmetric with respect to the 45 ° asymptote. 
(The asymptote is thus the bisecting line of the pre- 
vious two directions.) The product of two successive 
reflections generates the hyperbolic rotation N 2, 

mk+lmk=rk+lrk=N 2, f o r a n y k ~ Z .  (38) 

Analogous considerations can be made for the sub- 
lattice A2, generated by D3 and /)4, which is 
equivalent to A~ since it arises from the latter by a 

hyperbolic rotation, which is the Euclidization con- 
sidered in Fig. 6. With respect to the basis D3, /94 
one then has, starting from the reflection m~: D 3--> 

D3-D4  and D4-->-D4: 

and 

r~, = -m~,. 

- A k ~  

- A k - , /  

(39) 

A set of these hyperbolic mirrors is shown in Fig. 10. 
One can now combine a mirror in the (D~, D2) plane 
with another one in the (/93, D4) plane, obtaining in 
this way a five-dimensional involution. (An involution 
is a symmetry transformation having eigenvalues + 1.) 
Not all combinations are allowed, as the lattice ~ is 
centered with respect to the lattice generated by the 
D basis. Examples of allowed combinations, giving 
involutions that leave the decagonal lattice 
invariant are: 

rnk @ m'k_l O) l, 

rk ~ ' r k - l ~ l ,  

mk@m'k+2@l, mk@r'k+2@l, 

rk@r'k+2@l, rk@m'k+2@l,. . . .  
(40) 

To simplify the notation, let 

l~'lk ~--- mk~m'k -101  and 

which have the properties 

~k = rk~r 'k- l@l,  (41) 

m k + l m  k = r k + l r  k = S.  

(42) 

Fig. 9. A set of  the infinite family of hyperbolic mirrors leaving 
invariant the sublattice Al and their action on the atomic posi- 
tions at p = 2 and p = 3 as in Fig. 4(b). The product  of two 
mirrors generates a hyperbolic rotation (or rotation-inversion) 
producing a transformation in space with a positive (or negative) 
scaling factor. 

J 

o 

o 

, o 

Fig. 10. As in Fig. 9, for the sublattice A 2. The corresponding 
mirrors are the same but they appear in a different orientation 
because they are transformed by the hyperbolic rotation with 
angle fl =-tanh-l(5t/2-2) as indicated in Fig. 6. 
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As an illustration consider 

tr4(D) = / ~i g o 
55 21 0 

0 5 

0 3 

0 0 

f 8  i 3 0 
21 8 0 

tr3(D) = 0 2 

0 1 

0 0 

so the relations 
.a ,,~ 

m4m3 = S and 

can be checked. 

000!t 
3 
0 

0 

0 ,  

0 

(43) 

^ 2  , , 2  
m 4 -- m 3 -- 1 (44) 

In fact, from results found so far, it seems that all 
the allowed involutions are generated by trk, by the 
two two-dimensional inversions I~ and /2 of the lat- 
tices A1 and A2, respectively, combined with the 
linear scalings To, T1 and T2 considered above. Note 
that the two inversions may be expressed by point- 
group elements indicated earlier: I2 is the Euclidean 
mirror ml given in (10) and I~ corresponds to - m l  = 
RSml with R as in (9). In summary, we have the 
relations 

{I, lo, o, o, o, ½}-.- g2g~, {I210, o, O, O, 0}= g2, 
{I10, o, o, 0,½}-g~. (45) 

If one now considers the action of all these invo- 
lutions on the atomic positions one sees that the p 
values are left invariant by t r k  for k even and per- 
muted according to (14)(23) for k odd (see Fig. 9). 
In the first case the nonprimitive translation required 
to leave the decagonal structure invariant is 
equivalent to zero and in the second case it is c/2.  
Thus, we get the additional symmetry generators 

glo = {trol 0, 0, 0, 0, 0}= trio, (46) 

gll = {tr~ 0, 0, 0, 0, ½}= ~1. (47) 

For the involutions Pk it is just the other way around, 
as one can also see from Fig. 9. In this case, we have 

{ro[O, 0, 0, 0, ½}--g5g,o 

and (48) 
{P1IO, O, O, O, 0}--- g~g,,. 

Examples of structural relations that are consequen- 
ces of these non-Euclidean symmetry transformations 
are given later (see Tables 2 and 3). 

4.5. Invariant Minkowskian metric 

The transformations S, T, trio, trl ,  11, 12 = ml and mz 
generate a point group Km that leaves invariant an 

Table 2. Images o f  the f ive atomic positions closest to 
the origin in the decagonal plane o f  atom 1, under some 

elements o f  the Minkow~skian point group Kom 

1 m 1 S 2 r~l 4 T2m2 T 1 "1"5 -1 

2,1,0,0 0,0,1,2 8,3,5,3 0,6,5,~ 3_,3,0,~ 0,6,5,2. 2, i,i, 2 
1,2,1,0 0,1,2,1 3,8,3,3 0,2,0,3 3,2,3,5 6,11,12,5 i,6,5,i 
0,1,2,1 1,2,1,0 5_-,3,8,3 3,0,2,0 5,3,2,3 5,12,11,6 1,5,6, i  
0,0,1,2 2,1,0,0 5,5,3,8 2.,5,6,0 2,0,3,3 2,5,6,0_ 1,1,1,2 
1,0,0,1 1,0,0,1 3,5,5,3 3,5,5,3 1,0,0,1 3,16,16,5 3,5,5,3 

Table 3. Image o f  the atom 1 position P = (2100) in 
the decagonal plane, under some elements o f  the multi- 

metrical point group Ko 

mlnl 4 till3 m 2 m2~l 3 S R  - t  S R  friaR - t  ~I2R 

2,5,6,0 1,2,1,0 i, 1,3,2 3,0,2,0 3,3,0,2 0,1,2,1 2,1,i ,  1 
m 2 S  T2 T2~12 To /'17"2 T~ -~ To T~ -~ T2 

0,2,0,3 5,3,2,3 1,2,1,0 3,0,2,0 3,8,3,3 2,0,2,0 3,4,7,3 

indefinite metric tensor suitably defined in the five- 
dimensional superspace. One can verify this by con- 
sidering in the superspace instead of the orthonormal 
basis e l , . . . ,  e5 the indefinite basis e l , . . . ,  e5 with 
e 2= e~ 2= e 2= 1, e~= e 2 = - 1  and eiek =0  for i # k. 
According to Klein (1892), Km is a group of pseudo- 
Euclidean transformations. However, it can also be 
described as a Minkowskian group. The transforma- 
tions To and 7"2 have been omitted from the gen- 
erators; they are neither hyperbolic rotations nor 
involutions. In the subspace (D3, D4) they corres- 
pond to the negautomorphs N1 and N~ 3, respectively, 
giving rise in the five-dimensional space to a situation 
requiring the concept of a multimetrical space group 
(Janner, 1991b, c). The application of these ideas to 
the A178Mn22 quasicrystal structure will be discussed 
in the next section. Furthermore, from the generators 
indicated, one sees that there are symmetries leaving 
both the Euclidean and the Minkowskian metric 
tensors invariant. 

The lattice 2 of symmetry translations remains the 
same. This fixes the relative orientation of the two 
bases, which is not free. For the validity of the super- 
space approach it is essential to require that, by the 
embedding of the quasicrystal structure, rotations 
remain rotations, whereas hyperbolic rotations yield 
scaling transformations. For the decagonal phase 
A178Mn22, this is indeed the case and the d basis can 
be expressed with respect to both the positive definite 
and the indefinite orthonormal bases: 

dk=Ea[(Ck--1) e l+ske2+(C2k--1)e3+s2ke4] (49) 

= 2a[ ( ck - C2k)e, + (Sk -- S2k)e2 + ( Ck + C2k -- 2)e3 

-~(Sk-~S2k)e4] , k = l , . . . . , 4  

and 

d5 = ce5 = ces, 

w h e r e  c k = COS (2wk/5) and S k = sin (27rk/5). 
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The elements g2, g4, gs, gs, g9, glo and g~l together 
with the lattice translations generate the five- 
dimensional Minkowskian space group 

Gm = PS~ T~ T~/ mzm~rfio~ . (50) 

As in the case of the Euclidean symmetry elements, 
to verify the structural relevance of these pseudo- 
Euclidean symmetries we consider the point group 
Kom of the symmetry transformations that leave a 
decagonal plane invariant, in particular that of atom 
1, omitting as usual the fifth coordinate and taking 
into account the shift of the origin by f =  (4, 4 4 

and the symmetry-breaking effects of the crystal form 
C~(I) t 's  for this set of positions. The point group Kom 
is generated by r~o, rnl, T1, T22, TS and S 2. As starting 
points, we take the five atomic positions closest to 
the origin and apply to them elements of K0m. The 
results are given in Table 2. 

The nature of the transformation S2 in space is an 
inflation by r 4-- 6.854, that of T2 is a linear scaling 
by r 3 along the y axis with the x axis as an invariant 
line, thus the transformation T~ scales along the x 
direction, by a factor - - r  6 the distance from the y 
axis, whereas the effect of trio in the physical space 
is less evident, even if expressible in terms of scaling 
and rotation. 

5. Multimetrical  symmetry 

Both the Euclidean space group Ge and the pseudo- 
Euclidean (or Minkowskian) group Gm are symmetry 
groups of the embedded quasicryst~;1. They share the 
lattice of symmetry translations, for which a positive 
definite and an indefinite invariant metric have been 
defined for the lattice basis d l , . . . ,  d5 given in (49). 
In addition, we have symmetry elements g6 and gT, 
defined in (29) and (31), respectively, which are 
neither Euclidean nor pseudo-Euclidean but satisfy 
the multimetrical requirement as given in equation 
(8) of Janner (1991c). Thus a multimetrical formula- 
tion for the symmetry of m178Mn22 is justified. 

One starts with a set of diagonal metric tensors 
involving +1 only, attached to the five-dimensional 
superspace that is considered, at first, as an affine 
space. There are therefore in total 25 different metric 
tensors. In the present case, however, in addition to 
the Euclidean metric tensor gO = (1, 1, 1, 1, 1) we can 
restrict consideration to the eight tensors 

g ° =  (1, 1, 1, 1, 1), 

g ° =  (1, i ,  i ,  1, 1), 

g ° =  (i,  1, 1, 1, 1), 

g° = (1, 1, ], 1, 1), 

g ° =  (i,  i ,  1, 1, 1), 

g °=  (i,  1, 1, L 1), 

g ° =  (1, i, '1, 1, 1), 

g ° =  (1, 1, 1, L 1), 

(51) 

where the corresponding diagonal elements are indi- 
cated. As an affine basis for the lattice ,~ the one 
expressed in terms of the orthonormal e~ basis may 

be chosen. The matrix c~ fixing the relation to the 
lattice basis d l , . . . ,  d5 is defined by 

5 

d, = E ejc~j,, (52) 
j = l  

and takes the form 

~-- 1/2 

7 --4r)  1/2 

2 

a = 2 a  --5/2 
5 

(3+4~-) t/2 

2 

0 

- r + l / 2  - r + l / 2  r - l / 2  

( 3 + 4 r )  1/2 - ( 3 + 4 r )  l/z - ( 7 - 4 r )  1/2 

2 2 2 

-5/2 -5/2 -5/2 
- ( 7 - 4 r )  i/2 - ( 7 - 4 r )  t/2 - ( 3 + 4 r )  1/2 

2 2 2 

0 0 0 

0 

0 

0 

0 

5c/24 

(53) 
Corresponding to the metric o g~, there is now a whole 
set g ( 2 )  of so-called compatible metric tensors gd 
defining different scalar products for the basis vectors 
di and satisfying 

ga=cTgOa, v = l , . . . , 8 ,  (54) 

where the tilde denotes the transposed matrix. In 
particular, one obtains the well known form for the 
Euclidean metric tensor of the d basis t2111 i) 4a 2 1 2 1 1 

ge=gao=--~ - 1 1 2 1 (55) 
1 1 1 2 
0 0 0 0 5c2/4a2/ 

and the metric tensor corresponding to the 
Minkowskian case (1, 1, 1, 1, 1) 

d 
g,. = g t  

4a 2 r - 8  2 r - 6  - 2 r - 3  - r - 7  

= - -  - r - 7  - 2 ~ ' -  3 2~ ' -6  ~ ' -8  

25 2 r - 6  - ~ - 7  r - 8  - 2 ~ ' - 3  

0 0 0 0 25c2/4a 2] 

(56) 

Analogous expressions can be derived for the other 
metric tensors. The Euclidean point-group elements 
E and the Minkowskian elements M satisfy the usual 
metrical invariance property 

EgeE = ge, l~gmM = gin, (57) 

whereas for the transformations To and T2, given in 
(32) and (28, respectively, pairs of different metric 
tensors are involved: 

TogfTo=g a and TogaTo=ga; (58) 

T'2ga6T2=gas and T'2gaT2=gg. (59) 

Other pairs of metric tensors are involved when 
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considering transformations like S~o and 7"1o. In this 
way one verifies that the point group K generated by 

K = {m, ,  m2, mz, T, Tz, trio, ml} (60) 

is indeed a multimetrical point group with respect to 
g(~) .  It follows that the group-G subgroup of the 
affine group A(5), 

G =  {.Z, g, ,  . . . , g,,}, (61) 

is also a multimetrical space group with Z, g ~ , . . . ,  g~, 
given in previous equations. 

Since the product of two symmetry transformations 
is also a symmetry transformation, one expects that 
the product of a Euclidean and a non-Euclidean 
symmetry transformation also leaves the structure 
invariant. This is indeed the case and is a nontrivial 
observation since such elements are structurally rel- 
evant for the occupied positions in space and not 
only for the ideal ones of" the infinite supercrystal. 
For a practical verification, we consider the subgroup 
Go of G that leaves a decagonal plane invariant. This 
group is symmorphic and its point group Ko is of 
infinite order. A full analysis of the properties of G 
and of Go is beyond the aim of the present paper. 
Here the analysis is limited to an indication that 
indeed the atom 1 positions within a decagonal plane 
are left invariant by a number of the generators given 
above (taking possible symmetry-breaking effects of 
the crystal form CF<s ~) into account). The Euclidean 
symmetries have already been considered in Table 1. 

/ ? - ` 5 .  

• • 6 - ` 5  • • 

- ' 71-,5 - 3 .  

, / , .  • , , ; - ,  ~ . " /  " ~ 
, _̀5 • • ~ ~ _~. • ~0~ _~ 

. . . .  

• . . . .  

• • , , 5 ~ - 2  \ 2 ~ , - ,  ~ o 6 ~ 0  . ,_½_~, 
• o0~-~ . 0 . . , , - ~ ,  
•-1° 66.55 -2_1 • • t 3 •2 1 ~,  ~/~ 3 .  1 --  2 ,3 -2~-3 1 

• _, ,5 o _,• , %0:2 - ;  . . . .  

• o i - l®l 
-2 ~ . . . .  ~ , ~  . . . . . . .  • 

• ~ ° 

-2 351 -2O ® J ; ' ~ •  . , ~ ., %-,, 
- 1  

_ ~  o ~ 0%-~,5 
3 3 •  o 

• ~ l  - 5  - 1 5  

• ® ® 

-,5~ • . -~-~ . . . .  ~-~oo • 

• - , 5 1 7 4  . 

-,5 ~_~_,~ _~ _~,, 
0 -5 --256 • 

-̀ 5 -3 4 ? ® 
3 - - '  8 

Fig. 11. The atomic positions occupied by atom 1 are as in Figs• 
3 and 2(b). Those encircled can be obtained by applying to the 
position (2100) elements of the point-symmetry group of the 
decagonal plane• Only a subset of these point-group-equivalent 
positions is marked here. (Some more points can be seen in 
Fig. 15)• 

Some of the Minkowskian ones are given in Table 2, 
whereas additional typical multimetrical point-group 
transformations appearing in K0 can be found in 
Table 3. 

In Fig. 11 the occupied atomic positions that one 
obtains by applying elements of the point group Ko 
to the atomic position P =  (2100) are circled. The 
general behavior clearly reveals pentagrammal sym- 
metry, even if not all K0-equivalent atomic positions 
are shown• We recall that all the positions appearing 
in Fig. 11 are translationally equivalent. 

6. Pentagrammal symmetry 

The aim of this section is to discuss in what sense 
the point group Ko, i.e. the symmetry of the atom 1 
positions belonging to a decagonal plane, is an invari- 
ance group of self-similar pentagrams. Before doing 
that, let us consider the Z-module M o - - { a ~ , . . . ,  a4} 
obtained from M by omitting the basis element as, 
which is not relevant in the present context. Further- 
more, the action of Ko is also restricted to the con- 
stant-z plane• 

The point group K0 leaving the set oftranslationally 
equivalent positions invariant also leaves M0 
invariant. The particular multimetrical character of 
K0 in the superspace implies that in the decagonal 
plane its elements are expressible as products of (two- 
dimensional) rotations, proper and improper, and 
scaling transformations with positive as well as nega- 
tive scaling factors. Accordingly, the name 'scale- 
rotational point group' is justified. 

In previous publications (Janner, 1990; Janner & 
Janssen, 1990), a scale-rotational point group was 
defined as a subgroup of the group H ( m )  of 
homotheties of a Euclidean m-dimensional space V. 
We recall that H ( m )  consists of elements of the type 

o ~ = ( X , R ) ~ H ( m ) ,  A ~ R , R ~ O ( m )  (62) 

acting on the vectors r of V according to 

ar=ARr ,  ( A , R ) ~ H ( m ) .  (63) 

In the present case, however, Ko is not a subgroup 
of H(2) since it contains, together with planar scalings 
(with respect to an invariant point), linear scalings 
(having an invariant line). 

We define, therefore, as an m-dimensional full 
group of homotheties HF(m) the group generated by 
the subgroups H ( m ) ,  H ( m -  1 ) , . . . ,  H(1), 

H F ( m ) = { H ( m ) , H ( m - 1 ) , . . . , H ( 1 ) } ,  (64) 

where H ( k )  acts on a k-dimensional subspace leav- 
ing the orthocomplementary subspace pointwise 
invariant. The group HF is independent of the par- 
ticular choice made for these subspaces. For the pres- 
ent case we have 

Ko c HF(2) and KoMo = Mo. (65) 
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This is a property of the symmetries considered here 
for the decagonal phase and is not true in general, 
as multimetrical symmetries are also structurally 
possible in the physical space (Janner, 1991a). 

Consider now a self-similar pentagram, obtained 
by extending the classical construction by repeated 
inflations and deflations. Starting from a regular pen- 
tagon with edge I and vertices 1 , . . . ,  5 joining alterna- 
tive vertices (say 1-3, 2-4, 3-5, 4-1), one obtains a 
smaller regular pentagon having an edge I~ ~" turned 
by 36 ° with respect to the previous one (deflation). 
Conversely, a larger one (with edge h-) is obtained 
through lengthening the edges of the original pen- 
tagon, by joining successive intersections (inflation). 

Looking at such self-similar pentagrams, one 
immediately recognizes among the elements of Ko 
those that are symmetries of the set of vertices of all 
inflated/deflated pentagons (Fig. 12), such as the 
rotation R 2, the mirror ml = my, the 7 . 4  sca l ingS 2, the 
rotation-scale R S =  SR, the scale-inversion 1S and 
the mirror-scale m2S = Sm2. It is, therefore, not sur- 
prising that the point-group equivalent positions indi- 
cated in Fig. 11 show pentagrammal symmetry. 

Less evident symmetries are also present, such as 
the linear ~.6 scaling T], which is a reflection in the 
y axis combined with a dilation along the x axis by 
a factor T 6 or the other linear scaling T2 (Fig. 13). 
These transformations introduce additional points. 
Such additional points are also present in the Fourier 
map as positions of the atoms 1 in a decagonal plane, 
once the various pentagrams have been drawn (Fig. 
14). In any case, the full set of (occupied) positions 
that are Ko equivalent to a given one, say P -- (2100), 

lie along straight lines through the edges of the entire 
set of self-similar pentagrams. Furthermore, the local 
tenfold axes are located at the vertices of the pen- 
tagrams, whereas it is along the edges that one finds 
the corresponding sets of  intersecting Fibonacci lines 
(Fig. 15). 

• • " c . . . . . . . . . . . . . . . . . .  

....; ..... ; ....... i .............. ...... . 

@ 

® 

i' 

Fig. 13. A set of point-group-equivalent positions occupied by 
atom 1 showing pentagrammal symmetry (compare with Fig. 
11). In particular, the effect of the linear scaling transformation 
7"1 on positions along Fibonacci lines (parallel to the invariant 
one) is shown. Connected by dashed lines are pairs of equivalent 
positions that one obtains by combining a reflection in the y 
axis with a z6 dilation along the x axis. 

~O0 0 

i. " ~ ~ ~ ~  ~ ~ " • ~ . e o oo , 

0 

I o ~ - M  r d6~-'IT Io  ~ 0 a -  ~mr_" at - '~,J l  - o ° o o -  
-,~ t ~ "~ o~+~#.\ o . .  ^.., o. 

~ o .  o o  am£ 

I ~  ~ ' ~  • '~.." -* 
-i0 "° ° " -" . . . .  " -~ 

-i0 0 10 

Fig. 12. Typical multimetrical superspace-symmetry transforma- 
tions that induce, in the two-dimensional plane, scaling-rotation Fig. 14. The structural relevance of the pentagrammal symmetry 
transformations that leave a self-similar pentagram invariant, is demonstrated on the basis of the Fourier map of a decagonal 
Illustrated are: R2: 12-* 13; $2: 2-* 12; m t : 13-* 14; m2S: 6-* 11; plane of AI78Mn22 obtained by W. Steurer, who provided this 
IS: 5-*7; RS-I: 15-* 10. figure. Compare with Figs• 13 and 15. 
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7. Decagrammal point group 

The point group K of the nonsymmorphic multi- 
metrical space group G was given in (60). Its planar 
subgroup Ko is of index four in K and the coset 
decomposition is 

K = Ko+ mzKo+ m2go+ mzm2Ko, (66) 

with m 2 and mz given as in (11) and (12), respectively. 

Indeed, one finds in Ko the elements ml, R S ,  trio and 
T2. One obtains R from m 2 m  1 = R and thus also S; 
together with Srfio = rfi~ one obtains a set of generators 
for K. 

Applying the transformation R to a self-similar 
pentagram, one generates a self-similar decagram 
(Fig. 16). Therefore, the point group K is the invari- 
ance group of a self-similar decagram, supplemented 
by the five-dimensional total inversion (or by the 
mirror plane mz). This concludes the present analysis, 
which is not necessarily exhaustive. 

While trying to present in a clear way the relations 
between symmetries and structural features, new sym- 
metry elements have been identified repeatedly. Thus 
the true point group may be larger than the one 
indicated here. Nevertheless, it is likely that the most 
relevant crystallographic symmetries of the A178Mn22 
decagonal quasicrystal phase have been given here. 
These symmetries were not apparent despite the fact 
that the structural characterization given by Steurer 
(1991), Ishihara & Yamamoto (1988) and Yamamoto 
& Ishihara (1988) of that compound in terms of a 
Penrose-like pattern is in principle complete. 

Fig. 15. The local tenfold axes are primarily situated at the vertices 
of a self-similar pentagram, whereas the corresponding 
Fibonacci lines appear along the edges. Compare with Fig. 14 
for the experimental atomic positions. 

Fig. 16. The point-group symmetry of a self-similar decagram is 
obtained by adding the total inversion to the point-group sym- 
metry of a self-similar pentagram. 
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Abstract 

Conditional joint probability distribution functions 
V ( ¢ , , . . . ,  ~o, , IR, , . . . ,  R , , . . . ,  Rp) of any set of n 
phases given any set of p diffraction moduli are 
calculated. The distributions include terms up to 
order 1 / N  and involve both triplet and quartet contri- 
butions. Two types of formulae are derived, which 
may be considered as developments of two mathe- 
matical approaches described by Hauptman [Acta 
Cryst. (1975). A31,680-687] and by Giacovazzo [Acta 
Cryst. (1975). A31, 252-259; Acta Cryst. (1976). A32, 
91-99] for the estimation of the quartet invariants. 

I. Introduction 

The discovery (Hauptman & Karle, 1953) of the 
properties of the structure invariants and 
seminvariants has played a crucial role in the solution 
of the phase problem. Their estimation was the main- 
spring for the development of the joint probability 
distribution methods (Hauptman & Karle, 1953; Klug 
1958). Such methods rely on the idea that certain 
combinations of phases (i.e. the structure invariants 
and seminvariants) can be estimated when the related 
structure factors have their observed values. 

More recently, this point of view has been general- 
ized by the neighbourhood principle (Hauptman, 
1975, 1978) and by the representation method 
(Giacovazzo, 1977a, 1980a). Such contributions 
extended the range of application of direct methods; 
indeed, single n-phase structure invariants could be 
estimated via the overall prior information provided 
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by p moduli of structure factors, where p may be 
much larger than n. Asymptotically, p may coincide 
with the number of measured diffraction magnitudes. 
The standard technique is as follows. 

(i) The joint probability distribution function 

P ( ~ o , , . . . , ~ p , , , . . . , ~ p , R , , . . . , R p )  (1) 

is first calculated. 
(ii) The marginal distribution 

P(~o, , . . . ,  ~,, R , , . . . ,  R , , . . . ,  Rp) (2) 

with n < p  is derived. Accordingly, 

P(,pl, • • •, ~n, R 1 , . . . ,  Rn, • • . ,  Rp) 

= • . ,  

R l  , . . . , R , ,  . . . , R p )  d~o,+l . . .  d~p. 

(iii) The conditional distribution 

P(,p,, . . . , ~ , [ R , ,  . .. , Rp) (3) 

is derived, where ~ 1 , . . . ,  (p, are the phases that com- 
pose the n-phase structure invariant 

• = rpl + (p2+...+~o. 

that one wishes to estimate. 
(iv) The conditional distribution 

P( cI, I R , ,  . . . , R p) (4) 

is obtained, which provides the desired estimate of ~. 
In this paper we will focus our attention on distribu- 

tions (3) characterized by large values of n. The aim 
is not that of deriving estimates of single n-phase 
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